Dr. Manuela Garnica hace materiales de un átomo de espesor

Dr. Manuela Garnica hace materiales de un átomo de espesor

dr-garnica_crop

Dr. Manuela Garnica es Doctora por la Universidad Autónoma de Madrid y se encuentra actualmente trabajando en la Technische Universität München (Múnich, Alemania) con una beca postdoctoral Marie Sklodowska-Curie. En la foto se encuentra ella junto con una maquina de ultra-vacío muy sofisticada que la permite crear pequeños materiales perfectos en 2D. Sus recientes estudios le han llevado a publicar recientemente un artículo en Nature Chemistry http://www.nature.com/nchem/journal/vaop/ncurrent/full/nchem.2600.html#affil-auth

Se puede encontrar más información en http://horizon-magazine.eu/article/making-materials-just-one-atom-thick_en.html

Votación para la presidencia de la Sección Exterior

Estimados/as socios/as de la Sección Exterior de la RSEF:
 
En nombre del Presidente de la Sección Exterior de la RSEF, se convocan elecciones para renovar el cargo de Presidente de la Sección Exterior.
Los candidatos enviarán sus nombres con la propuesta correspondientes a: secret.y.admon@rsef.es
desde mañana día 21 de septiembre hasta el 3 de octubre. Pueden consultar el Reglamento General de Secciones
 
Las fechas señaladas para el calendario electoral son las siguientes:
 
Convocatoria: 20 de septiembre de 2016
Recepción de candidatos: del 21 de septiembre al 3 de octubre
Proclamación provisional de candidatos: 4 de octubre
Reclamaciones: del 5 al 7 de octubre
Votación electrónica: del 10 al 13 de octubre
Proclamación del candidato: 14 de octubre
 
La votación se realizará a través de la web RSEF-elecciones (www.rsef.es/votaciones). Cada miembro de la Sección Exterior recibirá un correo electrónico con sus claves para realizar la votación online.
 
Muchas gracias a todos por vuestra participación.
 
Un cordial saludo,
 
Rolf Tarrach Siegel
Presidente Sección Exterior RSEF

Carlos López Otín: “España es una sociedad sin afición por la ciencia”

Carlos López Otin es hoy el científico español más citado en el campo de la biología. Desde su laboratorio en la Universidad de Oviedo, se ha ganado a pulso un enorme prestigio mundial por sus investigaciones pioneras sobre las claves genéticas del cáncer y el envejecimiento. En esta entrevista -que forma parte de 15 citas con la ciencia, una serie de encuentros entre periodistas y grandes figuras de la investigación en España organizados por la Fundación Lilly para conmemorar su decimoquinto aniversario-, este apasionado detective del ADN humanolamenta la falta de interés por la ciencia en la sociedad española, y apuesta por la educación como la única esperanza para un futuro mejor en el que el conocimiento tenga el peso que se merece en nuestro país.

Más: http://www.elmundo.es/ciencia/2016/07/24/579272dc268e3e8a788b4654.html

Alberto Fernandez-Nieves

https://www.physics.gatech.edu/user/alberto-fernandez-nieves

I am associate proAlbertoFernandezNievesfessor at Georgia Tech. My group is expert on the Physics of soft materials with a focus on the connection between microscopic order and macroscopic properties. Soft materials are materials whose properties are determined by internal structures with dimensions between atomic sizes and macroscopic scales. They are characterized by energies that are typically comparable to kT. As a result, they have low elastic moduli, often ~1-10 Pascals. Typical soft materials include liquid crystals, polymers, colloidal suspensions and emulsion drops. These materials, unlike conventional simple liquids, are locally heterogeneous and can have broken symmetries that affect their physical properties. Hence, although they often exhibit liquid-like behavior, soft materials also often exhibit properties of solids. Our laboratory studies the physics of soft materials with a focus on the connection between microscopic order and macroscopic properties. The underlying theme is to pursue basic understanding and address fundamental questions. However, we also address applied problems and pursue industrial collaborations since many of the materials we study can be viewed as model systems for those that are often used in applications. Current projects include (i) studying the phase and non-equilibrium behavior and properties of dense microgel suspensions, (ii) understanding the consequences of confinement and curvature over the equilibrium states of ordered materials, which in many cases require the existence of topological defects in their ground states, and (iii) electrohydrodynamics of toroidal droplets and jets.